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ABSTRACT 
Methods that use spatial gradients of enthalpy to evaluate effective specific heats and capture latent heat 
effects in phase change problems have been used successfully in finite element formulations based on linear 
interpolation. In view of the greater geometrical flexibility and efficiency of biquadratic isoparametric 
elements, it is of interest to assess the use of the methods with these elements. In comparisons with an 
accurate semi-analytic solution for a test problem, it is shown that the enthalpy gradient methods with 
quadratic interpolation are prone to error. A new procedure is proposed that uses bilinear sub-elements 
for enthalpy, formed by subdivision of the biquadratic temperature elements. This is shown to be accurate 
and robust, for phase change intervals as small as 0.02°C. 
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THE EFFECTIVE SPECIFIC HEAT METHOD FOR MELTING 
AND SOLIDIFICATION 

A popular and generally successful method for treating latent heat effects in phase change is by 
the use of an effective specific heat, Ceff, as illustrated in Figure 1. Here, the latent heat is 
distributed over a more or less narrow temperature range, and appears as a peak in the plot of 
effective specific heat versus temperature. The method is computationally convenient, because 
the heat transfer in both phases can be solved as a single problem, without the need to track 
the interface explicitly. It can also be generalised to multidimensions in a straightforward way, 
and existing heat transfer codes can be adapted to include phase change, by adding a subroutine 
to define a temperature dependent effective specific heat, Ceff(T), as in Figure Ia, along with other 
temperature dependent physical properties. 

Difficulties can arise, though, in using this approach. In treating pure materials, which have 
sharply defined melting points, the physics must be approximated by spreading latent heat effects 
over at least a narrow temperature interval. Potentially more serious, though, than this physical 
approximation is the possibility that the peak in effective specific heat may be 'skipped' in the 
computations if Ceff(T) is obtained in the straightforward way described above. This can occur 
if the phase change falls entirely between integration points, or within a time step. In dealing 
with more complex materials, such as alloys or semi-crystalline polymers, the phase change 
does, in fact, extend over a significant temperature range, and traces from differential scanning 
calorimetry can show peaks in effective specific heat that may have a base width of 10 or 20°C. 
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The danger of skipping the peak is then reduced, but the physics is still approximated, because 
the position and width of the peak can depend on scanning rate and on whether heating or 
cooling is used. In a practical problem, a range of heating or cooling rates will occur, and no 
particular DSC trace will be entirely appropriate. The only way of avoiding this difficulty is to 
obtain latent heat effects by modelling the crystallization kinetics, coupled with the heat transfer. 
However, in view of the complexity of this undertaking, it is clear that techniques such as the 
effective specific heat method will continue to be used. 

Techniques designed to avoid latent heat 'skipping' have been proposed in the finite element 
literature, based on the use of enthalpy, H, which is related to the effective specific heat, Ceff by: 

hence: 
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Figure 1b illustrates this function of temperature. The basic idea is to utilize enthalpy differences 
over finite intervals of time or space. Spatial differencing has been more widely used, and is the 
subject of the present note. From a subroutine defining the function H(T), enthalpy values are 
assigned to nodes consistent with the current temperature solution. Enthalpy is interpolated 
within elements using the same shape functions as for temperature, and values of pCeff calculated 
at integration points using spatial gradients of temperature and ehthalpy. Thus, Comini et al.1 

proposed: 

for use with linear triangular elements. 
In subsequent work del Guidice, Comini and Lewis2 used derivatives in the direction, s, of 

the temperature gradient: 

hence in two dimensions: 

and applied this using biquadratic isoparametric elements. Lemmon3 gave a detailed exposition 
of the use of spatial gradients, showing how, for linear interpolation, a true mean value of pCeff 
over the element is obtained and proposed: 

for use in two dimensions. 
Thomas, Samarsekera and Brimacombe4 in a comparison of the del Guidice, equation (3b), 

and Lemmon, equation (4), methods with linear triangular elements, found that the Lemmon 
formula gave slightly better results. Regarding element type they remarked that 'the discontinuous 
temperature field across the solid-liquid boundary would be better approximated by a large 
number of elements than by a few higher order elements'. It is, of course, the temperature 
gradient that is discontinuous across the phase boundary, and this only when the melting point 
is sharply defined. The assertion that linear elements are better for phase change problems was, 
however, repeated by Dalhuijsen and Segal5, who found both the Lemmon and del Guidice 
methods satisfactory, and superior to ones based on fictitious heat flow. The difficulty in 
computing phase change arises from the sharp changes in effective specific heat, and enthalpy, 
rather than from discontinuities in temperature gradient. Provided that reliable mean values of 
effective specific heat can be obtained at integration points, the use of higher order elements is 
attractive, for all the usual reasons of efficiency and geometrical flexibility. The spatial averaging 
techniques reviewed above were originally proposed for linear elements, where it is clear that 
true element mean values are given. The key question, and the subject of the present work, is 
whether and how they can be extended to higher order elements. Despite their apparently 
successful use with biquadratic isoparametric elements by del Guidice et al.2, it turns out that 
their straightforward use can lead to errors. 
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In the following we test the del Guidice and Lemmon methods on biquadratic isoparametric 
elements in a solidification problem with a known solution. Having identified the source of 
errors, a technique is proposed that overcomes the difficulty and efficiently provides results of 
high accuracy. 

TEST PROBLEM 

We compare our numerical solutions with a result obtained by Rathjen and Jiji6, which, though 
it includes some approximations, is believed to be of high accuracy. These authors considered 
cooling and solidification of material in the symmetric corner, x, y > 0, initially liquid at 
temperature T1, greater than or equal to the sharply defined freezing temperature, TF. At time 
t > 0, the boundaries x = 0, y = 0 are reduced to and maintained at Tw, Tw < TF. The densities 
of both phases are taken to be equal, as are the thermal diffusivities. The problem was solved 
by superimposing solutions corresponding to a simple conduction problem, and one involving 
a moving heat source representing the latent heat release at the interface. The shape of the 
interface is fitted (approximately) by a superhyperbola with two adjustable parameters λ and 
m. λ is obtained as a function of β, the latent to sensible heat ratio, from a plot supplied in their 
paper; x*0 and x*1, two dimensionless lengths, are also read from plots against β. m is then found 
from the a further plot as a function of x*0λ and x*1λ We outline this procedure here because 
the accuracy of reading these various plots is limited, and it is important to assess the size of 
possible errors on the solution values that result. A further parameter to be chosen in the 
evaluation of the solution is A, introduced to eliminate an infinite limit in a quadrature, which 
is carried out using Gauss' method, with 40 points in each coordinate direction. The resulting 
expression is rather cumbersome and is not reproduced here. Rathjen and Jiji assess the accuracy 
of their results by comparison with a finite difference solution. Differences are generally about 
0.15% of (Ti — Tw), the imposed temperature change. Part of the discrepancy may, of course, 
be due to truncation errors in the finite difference solution. The present calculations were carried 
out with initial and boundary conditions (dimensions m, see Figure 2): 

t < 0 0 < x < 0.762 0 < y < 0.762 T = Ti = 1535°C 
t > 0 x = 0 0 < y < 0.762 T = Tw= 1150°C 

y = 0 0 < x < 0.762 T = Tw=1150°C 

x = 0.762 0 < y < 0.762 

y = 0.762 0 < x < 0.762 

and physical properties: 
Solidification temperature TF = 1500°C 
Thermal conductivity k = 30 W/m °C 
Density p = 7200 kg/m3 

Specific heat C = 750 J/kg °C 
Latent heat of fusion L = 262.5 x 103 J/kg °C 

giving 
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Note that p, k and C are taken to be the same in both liquid and solid phases. Reading from 
the plots provided by Rathjen and Jiji6 

x*0 = 0.680 ± 0.002 
x*1 = 0.770 ± 0.002 
λ = 0.580 ± 0.002 

leading to 

= 1724 ± 0.0075 = 1.3280 ± 0.0080 

Reading m as a function of these values we find 2.5 < m < 4.5, approximately. The uncertainty 
in m seems rather large, but fortunately the solution is insensitive to this. Calculation of the 
temperature at, for example, x = y = 0.1905 m, and t = 5400 s gives T = 1388.5 ± 0.1°C; i.e. the 
resulting uncertainty in T is about 0.03% of the imposed temperature difference (Ti — Tw). 
Finally, we comment on the choice of the parameter A. Rathjen and Jiji suggest Λ > 3λ, or if 
T*1 > 1.0 and β > 1.0, then Λ > 5λ is required. Consistent with this our numerical experiments 
showed the solution to be independent of Λ for Λ > 4λ, which value was used in the results 
reported. 

It therefore seems likely that results derived from the Rathjen and Jiji paper are accurate to 
better than 0.15% of (Ti — Tw) or 0.6°C in the present test problem. It is therefore meaningful 
to make comparisons with the finite element results at this level. 

FINITE ELEMENT SOLUTIONS 

The domain of the test problem was discretized using a regular 11 x 11 mesh of isoparametric 
biquadratic Lagrangian elements, Figure 2. Finite element equations were formed in the usual 
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way, using the Galerkin procedure, with the θ-method for time-stepping. The equations were 
linearized by evaluating the specific heat, Mn, and conductivity, Kn, matrices corresponding to 
temperature Tn, at the start of the time step: 

0 was chosen as 0.75 to give a balance between stability and lack of oscillations, and truncation 
error. Mass lumping of M was not applied, as numerical experiments showed that lumping gave 
less accurate results. Introduction of the step change in the surface temperature at t = 0 injects 
oscillations into the numerical solution, which, though they die away, are undesirable. The 
numerical solution was therefore started from t = 480 s, using as initial conditions values obtained 
from the Rathjen and Jiji theory, which, of course, incorporate the required boundary conditions 
at x = 0, 0 < y < 0.762 m; y = 0, 0 < x < 0.762 m. Zero normal temperature gradient conditions 
were applied in the usual way at the internal boundaries x = 0.762 m, 0 < y < 0.762 m; 
y = 0.762 m, 0 < x < 0.762 m. The time step was set at 120 s, and the solutions run to 5400 s. 
At this time the dimensionless distances x* and α = thermal diffusivity] 
corresponding to the internal boundaries are approximately equal to A, as required: that is, the 
solution near the boundaries is effectively 1-dimensional, justifying the use of the zero normal 
heat flux boundary condition. 

The effective specific heat was represented in a subroutine using piecewise continuous linear 
functions of temperature, as illustrated in Figure 1a; and enthalpy correspondingly, with quadratic 
functions in the phase change interval, Figure 1b. In a series of runs this interval ΔTPC (the base 
width of the effective specific heat peak) was taken as 0.02°C, 0.2°C, 2°C, 5°C, 10°C, 20°C and 
30°C, whilst maintaining the latent heat constant. 

Results are examined at nodes on the diagonal x = y, for 0 < x < 0.381 m, which spans the 
region affected by the phase change throughout the simulation. The percentage departure of a 
computed nodal value, Tc, from the theoretical value, Tt, is defined as 

and the mean error over the 11 nodes is 

Figures 3a and 3b show values of ē obtained at t = 2400 s and t = 5400 s using: 
(i) The direct effective specific heat method, with integration point values obtained directly 

from Ceff(T). 
(ii) The del Guidice method, equation (3b). 
(iii) The Lemmon method, equation (4). 
In (ii) and (iii) integration point values of the spatial gradients of enthalpy are obtained from 

the biquadratic interpolation of this quantity. 
The figures show, as expected, that the direct effective specific method fails badly for small 

phase change intervals, giving an error of 13% for ΔTPC = 2°C at t = 5400 s. Only when 
ΔTPC ≈ 30°C do the results approach those obtained using the del Guidice and Lemmon methods. 
At t = 2400 s these show very similar errors of about 1%, constant over the whole range of 
ΔTPC. However, at t = 5400 s less simple behaviour is observed; errors for the Lemmon method 
are again around 1 % over the whole range, but the del Guidice results show irregular behaviour 
as ΔTPC is reduced, with errors up to 9%. In view of the apparent similarity of the methods, 
this may initially seem surprising. The explanation, though, is not hard to find. For small ΔTPC, 
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where nodal enthalpy values change sharply within an element, the biquadratic interpolation is 
unable to provide reliable integration point values of the spatial derivatives. This is illustrated 
in Figure 4, from which it is clear that incorrect negative gradients may occur. The effect of 
these is masked in the Lemmon formula, because squares of gradients are used; hence its rather 
better performance. Nevertheless, incorrect values of Ceff are produced. 

It is clear, then, that the methods based on enthalpy gradients are unsatisfactory when quadratic 
(or higher order) interpolation is used. We are reluctant, though, to forgo the advantages of 
biquadratic isoparametric elements in representing temperature fields (and velocity fields in 
coupled problems). We therefore propose the procedure described in the following section. 

BILINEAR SUB-ELEMENTS FOR ENTHALPY 

At each time step, nodal temperatures are scanned, to establish which elements are affected by 
phase change. In those that are not, specific heat is obtained in the straightforward way as a 
function of temperature at the 3 x 3 integration points. Phase change elements, however, are 
subdivided into four bilinear sub-elements, as shown in Figure 5. The sub-elements are then 





94 J. F. T. POTMAN AND G. P. WHITHAM 

scanned, and, in those unaffected by phase change, specific heat is again obtained 
straightforwardly at the 2 x 2 integration points. In sub-elements affected by phase change, the 
del Guidice or Lemmon methods are used, based on spatial gradients from bilinear interpolation 
of enthalpy. Contributions from the sub-elements are assembled into the stiffness matrix for the 
parent biquadratic element, and the solution is completed as usual. 

This procedure avoids the false gradient values that can arise from quadratic interpolation of 
enthalpy, whilst retaining the advantages of higher order isoparametric elements in representing 
the temperature field. It could be regarded as a simple form of dynamic adaptive mesh refinement 
for phase change, and can obviously be extended to further levels of subdivision of the biquadratic 
elements, if this should prove necessary. Computing costs are increased by the use of 16 rather 
than 9 integration points, but only in those elements where phase change is occurring, and this 
seems a small price to pay for proper handling of the latent heat. 

The test problem was re-run using the procedure described, and results are shown in Figure 
6. At t = 2400 s, mean errors, ē, in the computed results are generally below 1%; at t = 5400 s 
the del Guidice method produces errors up to 1.4% for small ΔTPC, whilst for the Lemmon 
method errors are around 0.6%. It is clear that the accuracy of the numerical results has been 
substantially improved by the new algorithm, which is robust when ΔTPC is as small as 0.02°C. 
Use of the Lemmon formula is found to give somewhat better results, consistent with conclusions 
in previous work using linear interpolation. 

Finally, for completeness, we note one or two points to do with the comparisons that have 
been made between numerical and theoretical results. The problem solved numerically is, of 
course, more or less different from that solved semi-analytically, in that the phase change is 
spread over a finite temperature interval. Although this may affect point values, its influence on 
average differences between the two solutions is likely to be small, and this seems to be confirmed 
by the rather weak dependence of ē on ΔTPC shown in Figure 6. The form of this dependence, 
though, is a little complicated and is believed to result from the interaction of errors resulting 
from the use of a finite ΔTPC, with those due to discretization and linearization of the θ-method. 
These details leave unaffected our conclusion that the new algorithm provides an efficient and 
reliable way to handle latent heat using isoparametric biquadratic elements. 

CONCLUSION 

Methods that use spatial gradients of enthalpy to evaluate the effective specific heat, taking into 
account latent heat in phase change problems, have been shown to be prone to error if used in 
a straightforward way with quadratic interpolation of enthalpy. A modified procedure, using 
bilinear enthalpy sub-elements, formed by subdivision of the biquadratic temperature elements, 
is shown in our test problem to be accurate and robust, for phase change intervals ranging from 
0.02 to 30°C. 
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